A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize
نویسندگان
چکیده
Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.
منابع مشابه
Assembling biological boolean networks using manually curated databases and prediction algorithms
Despite the large quantity of information available, thorough researches in various biological databases are still needed in order to reconstruct and understand the steps that lead to known or new phenomena. By using protein-protein interaction networks and algorithms to extract relevant interconnections among proteins of interest, it is possible to assemble subnetworks from global interactomes...
متن کاملNetAligner—a network alignment server to compare complexes, pathways and whole interactomes
The many ongoing genome sequencing initiatives are delivering comprehensive lists of the individual molecular components present in an organism, but these reveal little about how they work together. Follow-up initiatives are revealing thousands of interrelationships between gene products that need to be analyzed with novel bioinformatics approaches able to capture their complex emerging propert...
متن کاملA lock-and-key model for protein-protein interactions
MOTIVATION Protein-protein interaction networks are one of the major post-genomic data sources available to molecular biologists. They provide a comprehensive view of the global interaction structure of an organism's proteome, as well as detailed information on specific interactions. Here we suggest a physical model of protein interactions that can be used to extract additional information at a...
متن کاملConstruction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملModeling and characterization of disease associated subnetworks in the human interactome using machine learning
The availability of large-scale, genome-wide data about the molecular interactome of entire organisms has made possible new types of integrative studies, making use of rapidly accumulating knowledge of gene-disease associations. Previous studies have established the presence of functional biomodules in the molecular interaction network of living organisms, a number of which have been associated...
متن کامل